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SUMMARY 
Finite element solutions of the primitive equation (PE) form of the shallow water equations are notorious 
for the severe spurious 2Ax modes which appear. Wave equation (WE) solutions do not exhibit these 
numerical modes. In this paper we show that the severe spurious modes in PE solutions are strongly 
influenced by essential normal flow boundary conditions in the coupled continuity-momentum system of 
equations. This is demonstrated through numerical examples that avoid the use of essential normal flow 
boundary conditions either by specifying elevation values over the entire boundary or by implementing 
natural flow boundary conditions in the weak weighted residual form of the continuity equation. Results 
from a series of convergence tests show that PE solutions are of nearly the same quality as WE solutions 
when spurious modes are suppressed by alternative specification of the boundary conditions. Network 
intercomparisons indicate that varying nodal support does not excite spurious modes in a solution, 
although it does enhance the spurious modes introduced when an essential normal flow boundary 
condition is used. 

Dispersion analysis of discrete equations for interior and boundary nodes offers an explanation of the 
observed solution behaviour. For certain PE algorithms a mixed situation can arise where the boundary 
nodes exhibit a monotonic (noise-free) dispersion relationship and the interior nodes exhibit a folded (noisy) 
dispersion relationship. We have found that the mixed situation occurs when all boundary nodes are 
specified elevation nodes (which are enforced as essential conditions in the continuity equation) or when 
specified flow boundary nodes are treated as natural boundary conditions in the continuity equation. In 
either case the effect is to generate a solution that is essentially free of noise. Apparently, the monotonic 
dispersion behaviour at the boundaries suppresses the otherwise noisy behaviour caused by the folded 
dispersion relation on the interior. 
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INTRODUCTION 

Early finite element solutions to the shallow water equations are well known for the severe 
numerical oscillations that arise as a result of the spatial discretization. The earliest finite element 
schemes used the shallow water equations in their unmodified or primitive form and typically 
applied equal-order interpolating functions for both surface elevation and v e l o ~ i t i e s . ' ~  Regard- 
less of the type of element and order of Lagrange interpolation, these primitive equation (PE) 
equal-order interpolation schemes led to solutions with severe spurious oscillation modes in 
both sea surface elevation and velocities. These undesirable modes were often eliminated by 
applying some type of broadband dissipation scheme implemented by using artificially high 
eddy viscosity  value^,^*^ averaging nodal solutions at  intermediate locations'" or using an 
inherently dissipative temporal discretization ~ c h e m e . ~  The heavy-handed addition of artificial 
damping is generally recognized as highly undesirable since it changes the dynamics of the 
original set of continuum conservation statements.8-'2 

Based on their success in eliminating spurious pressure modes in finite element solutions to 
the Navier-Stokes equations, mixed interpolation schemes were extensively applied in the second 
generation of finite element solutions to the shallow water equations. The most successful 
mixed-order algorithms use either six-node quadratic triangles for velocities and three-node 
linear triangles for elevation or nine-node biquadratic quadrilaterals for velocity and four-node 
bilinear quadrilaterals for elevation. 3,14 These algorithms result in smooth solutions for surface 
elevation but severe oscillations are still prevalent in the velocity s o l ~ t i o n . ' ~ ~ ' ~  

Successful finite element solutions finally emerged when the continuum equations themselves 
were rearranged prior to applying any spatial discretization procedure. The most successful of 
these were based on the wave equation (WE) form of the shallow water equations. The WE 
formulation combines the momentum and continuity equations into a wave-type equation in 
elevation and solves this equation in conjunction with the primitive form of the momentum 
 equation^.'^^'^ Extensive numerical tests and applications have demonstrated that WE formula- 
tions with equal-order interpolating functions for sea surface elevation and velocities produce 
very accurate solutions which are almost free of spurious modes.'4-28 A variety of derivative 
formulations which result in equations equivalent to the WE equation for surface elevation alone 
have also proven very s u c c e ~ s f u l . ~ ~ ~ ~ ~  

The origin of the severe spurious modes in finite-element-based solutions to the shallow water 
equations has been the topic of extensive analysis for quite some time.'3*'6,30-33 W e note that 
although non-linear cascading processes contribute to energy building up on the grid scale, the 
most severe 2Ax oscillations are a linear phenomenon and appear in the solutions of the entirely 
linearized shallow water equations. In PE schemes the spurious modes have been related to a 
folded dispersion relationship with allows multiple wave numbers to exist for a single forcing 
frequency.jO Mixed interpolation PE schemes also have folded dispersion relationships; however, 
since the minimum wavelength for sea surface elevation is 4Ax, the pertinent dispersion 
relationship is not folded for elevation and no spurious elevation mode exists.' 3*14 Wave 
equation solutions to the shallow water equations on the other hand exhibit a monotonic 
dispersion relationship over the entire wavelength range (from 2Ax to infinity) and therefore the 
spurious 2Ax-mode does not appear in either sea surface elevation or velocity. 14*30 

Our study focuses on the influence of boundary conditions on spurious oscillations in PE 
and WE solutions to the harmonic linearized shallow water equations. It has been known for 
quite some time that over-constraining boundary conditions can introduce spurious modes into 
Navier-Stokes and convection-diffusion equation solutions. Examples include the specification 
of tangential velocity boundary conditions in the Navier-Stokes equations, which forces a 
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spurious pressure as well as the specification of essential outflow boundary conditions 
in both the Navier-Stokes and convection-diffusion equations, which introduces spurious 
 mode^.^,^^ Recently boundary conditions have become a topic of increasing interest for solutions 
to the shallow water equations as 

In this paper we examine both the PE and WE solutions subject to different boundary 
condition implementations. Initially we consider the standard PE and WE formulations which 
enforce specified elevation boundary conditions as essential conditions in the continuity or wave 
equation respectively and no-normal-flow boundary conditions as essential conditions in the 
momentum equation (An essential condition means that the corresponding discrete conservation 
equation is eliminated and replaced by the specified boundary value.) We also study the PE and 
WE solutions subject to elevation boundary conditions specified over the entire boundary. 
Finally we examine a PE formulation cast into a weak weighted residual formulation. In this 
last formulation essential specified elevation boundary conditions on the seaward boundary are 
combined with natural no-normal-flow conditions on land boundaries (computed by a boundary 
integral that arises during the development of the weak form). A series of numerical experiments 
and convergence tests applied to Lynch and Gray's4' quarter-annulus test problem with 
quadratically varying bathymetry demonstrate that while the WE-based solutions are insensitive 
to the implementation of the boundary conditions, i.e. the solutions are highly accurate and free 
of noise, the PE solutions are quite sensitive to the implementation of the boundary conditions. 
In particular, PE solutions that enforce no-normal-flow boundary conditions as essential 
conditions result in noisy solutions. Conversely, PE solutions that specify essential elevation 
boundary conditions on the entire boundary or that implement a natural no-normal-flow 
boundary condition within the framework of a weak weighted residual formulation give solutions 
that are free of numerical noise. 

Dispersion analysis of the discrete equation pairs solved at interior and boundary nodes seems 
to offer an explanation for the observed solution behaviour. It is shown that whereas WE-based 
solutions always have monotonic dispersion curves at both interior and boundary nodes 
regardless of the boundary condition implementation, the dispersion behaviour of PE-based 
solutions can vary depending on the boundary conditions specified. Specifically, PE interior 
nodes as well as PE essential no-normal-flow boundary nodes have folded dispersion curves, 
while PE essential specified elevation boundary nodes and PE natural no-normal-flow boundary 
nodes have monotonic dispersion curves. To our knowledge a dispersion analysis of different 
boundary condition implementations and their correlation with numerical experiments has not 
been reported in the literature. Such an analysis appears to be a valuable tool in assessing the 
overall behaviour of the solution algorithm. 

GOVERNING EQUATIONS 

We examine the linearized form of the shallow water equations which are expressed as 

ailat + v - (hu) = 0, 

d(hu)/dt + ghVi + f x hu + T , ~ U  = 0, 

(1) 

(2) 

where t is the time, i is the surface elevation relative to undisturbed sea level, u is the 
depth-averaged velocity vector, h is the depth of undisturbed sea level (bathymetry), g is the 
acceleration due to gravity, T. is the linearized bottom friction coefficient and f is the Coriolis 
parameter. We note that the conservative form of the momentum equation has been used. 
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Typically, boundary conditions are prescribed either with surface elevation [* or normal flux 
Q.* which can be expressed as 

Rx, t )  = T*(x, t )  on rc, (34  

Qn(X, t )  = Qn*(X, t )  on rQ. (3b) 

Q. = hu n, (4) 

For linearized equations the normal flux is computed as 

where n is the unit outward normal vector to the boundary. 

linearized shallow water equations are also periodic and of the form 
When boundary conditions and/or other forcings are entirely periodic, responses for the 

i(x, t) = Re[&x)e'"'], 

u(x, t)  = Re[P(x)e'"'], 

where is the complex amplitude of the elevation, Q is the complex amplitude of the velocity 
vector, i = J( - 1) and w is the temporal frequency. This allows equations (1H3) to be simplified 
to the harmonic form 

tor* + v ' (hQ) = 0, 

(Po + Z*)hQ + ghVi  + f x hQ = 0, 

g(x) = %*(XI on rc, (84 

Qn(x) = Q:(x) on rQ. (8b) 

Equations (l), (2) or (6), (7) are the basis for primitive equation (PE) formulations. 

continuity equation in WE formulations.'6 The linear form of the WE is 
Equations (1) and (2) can be combined to form a wave equation (WE) which replaces the 

a2[/at2 + T* ai/at  - hu - VZ, - v - (ghvr + f x hu) = 0. 

i W ( i 0  + Z*)r* - hQ * VZ, - v * (ghvg + f x hB) = 0. 

(9) 

In harmonic form the WE may be expressed as 

(10) 

We note that equation (10) has been derived directly from the linearized time-dependent WE 
(9) and differs slightly from the spectral WE given by other investigators.' 5 9 1 8 9 2 9  Their wave 
equation includes elevation as the only dependent variable and is therefore decoupled from the 
momentum equation. However, for cases without Coriolis forcing and a homogeneous friction 
factor T., equation (10) is equivalent to that used by previous investigators. Finally we note that 
the same boundary conditions are usually applied for WE formulations as for PE formulations. 

SOLUTIONS TO THE HARMONIC SHALLOW WATER EQUATIONS 

The harmonic form of the linearized shallow water equations is investigated. In terms of accuracy 
the harmonic linearized shallow water equations for tidal problems have no associated time 
truncation errors or numerical problems related to the specification of the initial conditions. l o  

Thus numerical inaccuracies arise purely from the spatial discretization. 
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Table I. Summary of various solution strategies used in solving the harmonic shallow water 
equations 

Solution Boundary Seaward 
acronym Formulation conditions boundary Land boundary 

PE-S Primitive equation Standard Essential Essential no normal flow 

WE-S Wave equation Standard Essential Essential no normal flow in 
elevation 

elevation momentum and natural 
no normal flow in WE 

PE-E Primitive equation Elevation Essential Essential elevation 

WE-E Wave equation Elevation Essential Essential elevation 

PE-W Primitive equation Weak Essential Natural no normal flow 

elevation 

elevation 

elevation 

We examine and compare solutions using the PE formulation and WE formulation with 
boundary conditions implemented in various ways. Linear triangles are used to interpolate both 
elevations and velocities and fully consistent matrices are computed in all solutions. Seaward 
boundaries are always specified using surface elevations. The treatment of land boundary 
conditions includes the standard procedure for which normal flow boundary conditions are 
treated as essential conditions, the specification of elevation values over land boundaries and 
weak procedures where specified flow boundary conditions are treated as natural conditions. 
All the solutions presented in this section are summarized in Table I. Acronyms for each solution 
are also listed. 

In order to evaluate each solution’s performance and level of spurious oscillations, we 
solve Lynch and Gray’s41 popular quarter-annulus test problem with quadratically varying 
bathymetry. This stringent test problem poses potential numerical difficulties owing to its 
two-dimensional nature in addition to its variable bathymetry. The geometry consists of a 
quarter-annulus enclosed with land boundaries on three sides and a seaward boundary on the 
outer edge as shown in Figure 1. The dimensions used are an inner radius of rl  = 2 x 10’ ft 
and an outer radius r2 = 5 x lo5 ft. Bathymetry varies quadratically between h = 10 ft at rl  and 
h = 62.5 ft ar r 2 .  The linear bottom friction coefficient is specified as t* = 0.0001 s-’  and the 
Coriolis parameter is set to zero. A tidal forcing period of 12.4 h is applied at the seaward 
boundary. The grid used in the computations is the irregular triangular network shown in Figure 
2. This particular patched network presents possible numerical difficulties owing to the highly 
variable nodal support which alternates between four and eight nodes. 

Primitive equation formulation with standard boundary conditions (PE-S) 

We first consider the solution of the primitive equations using standard conditions (PE-S). 
Thus essential elevation boundary conditions are implemented on the seaward boundary and 
essential no-normal-flow boundary conditions are implemented on the land boundary. 

The Galerkin weighted residual statements for the harmonic continuity equation (6) and 
momentum equation (7) are respectively 

fm(e, 4i) + <V * (ha), 4i) = 0, 
((iw + z,)hB, + i )  + g(hVe, cPi) + (f x ha, $ i )  = 0, 

(1 1) 

(12) 
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Figure 1. Geometry and boundaries for the quarter-annulus test problem 

Figure 2. Irregular triangular grid at an intermediate level of refinement 

where (fl, f2) = Jn flf2 dR and 4i are the interpolating basis functions. The use of Co linear 
interpolating bases to represent both elevation and velocity and exact integration techniques 
leads to the following global system of algebraic equations for the continuity and momentum 
equations: 

M& + D c 8  = 0, (13) 

M,€J + D M S  = 0, (14) 

where g is the nodal elevation vector, 8 is the nodal velocity vector, Mc and Dc are the 
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continuity equation coefficient matrices and MI, and DM are the momentum equation coefficient 
matrices. 

Both elevation and normal flow boundary conditions are treated as essential boundary 
conditions. Therefore continuity equations in system (1 3) corresponding to boundary nodes with 
specified sea surface elevations are eliminated and replaced by the specified nodal sea surface 
boundary condition value. Equation pairs in (14) corresponding to land boundary nodes with 
specified normal flow boundary equations are first reoriented in a normal/tangential co-ordinate 
system. The reoriented equations which correspond to the specified normal flow directions are 
then eliminated and replaced by the specified nodal normal flow boundary condition 
The systems of equations (13) and (14) are solved simultaneously. 

For the qFarter-annulus test problem, elevation values on the entire seaward boundary are 
specified as 5* = 0-1 ft and normal flow values on the entire land boundary are specified as zero. 
The PE-S solution is compared with Lynch and Gray's'' analytical solution in Figure 3. Both 
the cosine and sine components of the elevation and radial velocity solutions are shown. The 
cosine and sine components are respectively defined as the coefficients of cos(wt) and sin(wt) in 
the solution expression. The predicted numerical solution at any value of B is contained between 
the maximum and minimum nodal values plotted. Owing to symmetry and the fact that the 
Coriolis parameter is set to zero, the exact solution is the same for all 8. 

The PE-S solution exhibits the severe spurious modes for which PE solutions are well known. 
Oscillations occur in both the radial and angular directions. The cosine component of elevation 
and corresponding sine component of radial velocity exhibit the worst oscillations. We note that 
this solution is almost identical to that published by Lynch.'* Small differences exist since we 
are using the conservative form of the momentum equations. 

Wave equation formulation with standard boundary conditions ( WE-S) 

We next consider the wave equation solution to the shallow water equations usingA standard 
boundary conditions (WE-S). Seaward boundary conditions are again specified with c* = 0.1 ft 
and are implemented as essential boundary conditions in the WE. Land boundary conditions 
are specified as no-normal-flow conditions and are now implemented as natural boundary 
conditions in the WE and essential boundary conditions in the momentum equations. 

The Galerkin weak weighted residual statement for the WE is readily developed using (10) 
and the steps described by Lynch and Gray:I6 

(( -w' + Ioz,)[, $i) + ((ghVt + h i  x h), V$i) - ( h h V ~ , ,  +i) = - (10 + T,)&$~ d r .  

(15) 
s,, 

Again Co linear bases are used to represent both elevations and velocities and exact numerical 
integration is used to yield the following global system of algebraic equations for the WE: 

Mwt + D w 6  = pw, (16) 

where Mw and Dw are the wave equation coefficient matrices and pw is the load vector for 
prescribed normal flow boundaries. 

The WE (16) considers boundary condition information on both prescribed normal flow 
boundaries, which are included in the boundary integral term represented by Pw, and prescribed 
elevation boundaries, which are included through the nodal boundary equation substitution 
procedure described previously. The discretization and handling of boundary conditions for the 
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Figure 3. Harmonic primitive equation solution with standard boundary conditions (PE-S) 
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Figure 3. (Continued) 
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momentum equation are exactly the same as for the PE-S formulation described in the previous 
subsection. Thus the WE formulation also solves (14) after the inclusion of prescribed normal 
flow boundary conditions as essential boundary conditions. The coupled system of equations 
formed by (16) and (14) is solved simultaneously. 

The WE-S solution for the quarter-annulus test problem with the same boundary conditions 
as for the PE-S solution is shown in Figure 4. The results are excellent and exhibit essentially no 
spurious modes. Some components of the solution do appear to be slightly damped. We note 
that this solution almost coincides with previously published WE solutions to this problem.' * 
Very slight differences exist owing to the fact that we are using the conservative form of the 
momentum equations. 

Primitive equation and wave equation formulations with entirely specijied elevation boundary 
conditions (PE-E and WE-E) 

We now examine the behaviour of the PE and WE solutions described in the previous 
subsections when surface elevation boundary conditions are specified over both the seaward 
and land boundaries in the quarter-annulus test problem (PE-E and WE-E solutions). Thus 
elevation values on the seaward boundary are prescribed as g* = 0.1 ft and elevation values on 
the land boundaries are prescribed using Lynch and Gray's41 analytical solution. Normal flow 
boundary conditions are not included in the solution; hence their influence can be conveniently 
assessed in intermodel comparisons. 

The PE-E solution to the test problem is shown in Figure 5 and the WE-E solution is shown 
in Figure 6. It is remarkable to note that the PE-E and WE-E solutions with prescribed elevation 
boundary conditions over the entire domain are very similar. There are essentially no spurious 
oscillations in either elevation solution, although the PE-E velocity solution is slightly noisier 
than the WE-E velocity solution. Both velocity solutions exhibit a loss of accuracy near the 
inner land boundary since no boundary constraints are imposed on the velocity solution. 

The entirely specified elevation boundary condition solutions presented in this subsection 
indicate that the interior domain discretization strategies of the PE and WE can lead to very 
similar solutions. Furthermore, the experiment clearly demonstrates that boundary conditions 
can fundamentally affect the solution. In fact, it appears that the treatment of no-normal-flow 
boundary conditions as essential conditions significantly influences the generation of spurious 
modes in PE solutions. 

Primitive equation formulation with weak normal flow boundary conditions (PE- W )  

Results from the previous subsection demonstrate the detrimental influence of essential 
no-normal-flow boundary conditions in the momentum equations on the quality of PE solutions. 
We now develop a PE solution in which normal flow boundary conditions are treated as natural 
boundary conditions in the continuity equation and are not implemented in the momentum 
equations (PE-W solution). Prescribed elevation boundary conditions are treated as essential 
conditions as was done in the PE-S scheme. 

A weak weighted residual form for the continuity equation is readily established by intergrating 
the second term in equation (11) by parts, which leads to 
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Figure 6. Harmonic wave equation solution with elevation boundary conditions specified on the entire boundary (WE-E) 
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Integration using equal-order Co linear interpolants yields the following system of global 
equations for the PE-W formulation: 

M c - d  + Dc-wO = pc-w, (18) 

where Mc.w and Dc-w are the weak continuity equation coefficient matrices and fjc-w is the 
load vector for prescribed normal flow boundaries. 

Thus equation (18) includes information on prescribed normal flow boundaries, which is 
embedded in the surface integral term pCmw, as well as prescribed elevation boundary conditions, 
which is included through the nodal boundary condition substitution procedure. The discretized 
momentum equations for the PE-W scheme are again represented by (14). However, normal 
flow boundary condition information is not incorporated into this set of momentum equations 
since it is already included in the continuity equation as a natural boundary condition. The 
systems of equations (18) and (14) with the boundary conditions implemented as described are 
solved simultaneously. 

The PE-W solution to the quarter-annulus problem with the seaward boundary specified as 
[* = 0.1 ft and the land boundary specified as a natural no-normal-flow condition is shown in 
Figure 7. The severe spurious modes which typically appear in PE solutions are not present. 
The elevation solution is excellent and without almost any discernible oscillations. The velocity 
solution away from the inner boundary is in general also very good and exhibits only slight 
oscillations. At the inner boundary the velocity solution is relatively poor, as was the case for 
the PE-E and WE-E solutions, since no essential velocity constraints are imposed at the land 
boundary. We note that the PE-W solution is dramatically better than the PE-S solution (cf. 
Figure 3). In fact, the overall quality of the PE-W solution is similar to that of the WE-S solution 
(except for the velocity solution near the inner boundary). Although the oscillations are slightly 
larger than in the WE-S solution, the PE-W solution does not experience the slight damping 
seen in the WE-S solution. 

The lack of severe spurious modes in the PE-W solution again illustrates that the spurious 
modes in PE solutions are strongly influenced by strictly enforcing normal flow conditions in 
the momentum equation as essential boundary conditions. 

CONVERGENCE RATE STUDIES OF THE HARMONIC PE-S, WE-S AND PE-W 
SOLUTIONS FOR VARIOUS NETWORKS 

In this section we present further comparisons of the harmonic PE-S, WE-S and PE-W schemes 
described previously. Specifically, we examine spatial convergence rates for various degrees of 
mesh refinement in addition to the effect of different networks. 

Again the quarter-annulus quadratic bathymetry test proble? serves as the basis of our 
comparison study. Seaward boundary conditions are specified as [* = 0 1  ft and land boundary 
conditions are prescribed with no-normal-flow conditions for all solutions. The degree of mesh 
refinement varies considerably and includes the very coarse 3 x 4 grid in Figure 8(a), the 
intermediate 6 x 8 grid used previously and presented in Figure 2, the fine 9 x 12 grid shown 
in Figure 8(b) and the very fine 12 x 16 grid shown in Figure 8(c). Element shape is maintained 
for all four grids. In addition to the four grids with linear triangles arranged in an irregular 
pattern with variable nodal support (four or eight), we also examined a corresponding sequence 
of regular linear triangular networks with a constant nodal support of six as well as bilinear 
quadrilateral networks. Sample networks for the two latter meshes are shown in Figures 9(a) 
and 9(b) respectively at an intermediate level of refinement. 
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(C) 

Figure 8. Irregular triangular grids (a) at a very coarse level of refinement, (b) at a fine level of refinement and (c) at a 
very fine level of refinement 

In order to quantify the performance of each scheme and network, we compute a global L, 
norm, normalized with respect to the area of the domain, which may be defined as 

where SN represents the numerical cosine and sine components of the elevation and radial velocity 
solutions, S ,  represents the corresponding components of the exact solution and A is the area 
of the domain R. The ELz norm represents an average global error for the components of the 
elevation and velocity solutions. 
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(a) (b) 

Figure 9. (a) Regular triangular grid at an intermediate level of refinement and (b) bilinear quadrilateral grid at an 
intermediate level of refinement 

We first examine solutions to the sequence of irregular triangular (IT) networks. The L, error 
norm for the cosine and sine components of the elevation and velocity solutions are plotted 
against the radial discretization length in Figure 10 for all three schemes. It is clear that the 
PE-S-IT scheme fares the worst by far owing to the severe spurious modes associated with this 
scheme. Although the scheme does converge, serious spurious oscillations are still apparent 
even for the very finest level of discretization. The accuracy of the WE-S-IT scheme is in general 
excellent for both elevations and velocities, since essentially no spurious modes are present in 
these solutions. The PE-W-IT solutions are excellent in elevation, since suprious modes are not 
present when normal flow boundary conditions are not treated as essential conditions, but these 
solutions do still exhibit significant L, errors in velocity owing to the flow leakage problems at 
the inner boundary. The PE-W-IT convergence curve for the cosine component of elevation is 
essentially identical to that of the WE-S-IT solution. Furthermore, the convergence curve for 
the sine component of elevation is somewhat better than that of the WE-S-IT solution owing 
to the slight amount of damping which shows up in the WE-S solutions for this component. 
The PE-W-IT velocity solution is worse than the WE-S-IT solution owing to the PE-W scheme’s 
inherent velocity errors at the inner land boundary. 

The convergence characteristics (as measured by the L ,  error norm) for the sequence of 
regular triangular (RT) networks shown in Figure 11 are basically the same as for the IT 
networks. The PE-S-RT scheme is the only solution for which the convergence curves differ 
substantially from the corresponding IT solution. Although the cosine component of the 
PE-S-RT elevation solution is better than that of the PE-S-IT solution, the sine component of 
the elevation solution is worse. Furthermorre, the PE-S-RT cosine velocity component is 
substantially worse than the PE-S-IT solution, with much larger wiggles, whereas the sine 
velocity component is a little better. The convergence curves for the WE-S-RT and PE-W-RT 
solutions are almost identical to the corresponding IT solutions. 

Finally, the convergence trends for the bilinear quadrilateral (Q) networks shown in Figure 
12 are very similar to those for the RT and IT  schemes. Again the PE-S-Q scheme is the only 
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solution which differs significantly from the solution obtained with the triangular networks. In 
fact, the cosine component of the PE-S-Q elevation solution is now idential to the other schemes 
and does not exhibit spurious modes. Although the sine component of the PE-S-Q elevation 
solution does exhibit some spurious modes, the L error norms are significantly better than for 
the IT and RT networks. However, the PE-S-Q velocity solutions have convergence curves 
which lie between those of the IT and RT solutions. The WE-S-Q and PE-W-Q schemes have 
almost identical convergence curves as for the IT and RT networks. We note that the PE-S-Q 
solution exhibits only radial oscillations and that no angular oscillations are present, whereas 
the PE-W-Q solution exhibits slight radial oscillations and very slight angular oscillations. 

In summary, for all networks examined, the PE-S solution is clearly the worst owing to the 
presence of severe spurious 2Ax modes. We note that it is only when the spurious 2Ax modes 
are present (in the PE-S solution) that there appears to be a significant grid dependence on the 
quality of the solution. 

DISPERSION ANALYSIS 

In the numerical experiments and convergence tests presented in this paper, we note that the 
quality of WE-based solutions is relatively insensitive to the boundary conditions specified. 
However, PE-based solutions are significantly influenced by boundary condition implementa- 
tion. In this section we apply dispersion analysis to study the propagation characteristics of the 
various discrete equation sets on the interior domain as well as on the boundary and we correlate 
the findings with results from the numerical experiments. Platzman3' first applied dispersion 
analysis to the shallow water equations and was able to identify the fundamental difference 
between PE and WE discrete equations on interior nodes. He found that PE solutions on interior 
nodes have a folded dispersion curve which allows two wave numbers per frequency (one physical 
long wave and a second near-2Ax non-physical short wave), whereas the WE-based solutions 
have a monotonic dispersion curve which allows only one wave number per frequency (the 
physical long wave). Note that a monotonic dispersion relation is also a characteristic of the 
continuum solution. 

In order to study the sensitivity of PE and WE solutions to boundary condition implementa- 
tion, we apply dispersion analysis to the discrete sets of equations associated with interior domain 
nodes as well as with boundary nodes. The cases examined are listed in Table 11. These cases 
allow us to discern the behaviour of the various solutions considered in the numerical 
experiments. We note that the first two cases are well-known standard a n a l y ~ i s ' ~ * ~ ' * ~ ~  but are 
included for the sake of completeness. All analyses are based on discrete equations derived from 
the one-dimensional form of the linear harmonic shallow water equations, (6)  and (7), and of 
the linear harmonic WE, (10). Assumptions of constant bathymetry and no Coriolis forcing are 
also made. In addition, linear finite elements are applied in all cases and fully consistent matrices 
are used. 

Case 1. Primitive continuity and momentum equations on interior nodes 

We first analyse the well-known PE solution on interior nodes. The discrete form of the 
primitive continuity and momentum equations applied to a generic interior node j for all 
PE-based solutions may be written as 

(1m/6)(tj- + 4tj  + t j+  + (h/2Ax)(aj+ - B j -  = 0, 
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Table 11. Summary of discrete equations on the interior and on the boundary 
to which dispersion analysis is applied 

Discrete continuity Discrete momentum 
Case equation equation Location 

1 Primitive continuity 
2 Wave equation 
3 Primitive continuity 

4 Wave equation 

5 Elevation boundary 

6 Primitive weak 
condition 

continuity including 
natural no-normal-flow 
boundary condition 

M omen tum Interior node 
Momentum Interior node 
No-normal-flow Boundary node 
boundary condition 
No-normal flow Boundary node 
boundary condition 
Momentum Boundary node 

Momentum Boundary node 
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For linear systems we can examine the solution behaviour by analysing only one component 
of a complex Fourier series representation of the solution. Thus elevation and velocity are written 
respectively as one-component series in space 

where cr is a generic wave number, 2, and U o  represent the elevation and velocity amplitudes 
of the Fourier component being examined respectively and xj is the spatial location of node j .  
Substituting for t j  and B j  into equations (20) and (21), noting that xj = jAx, simplifying and 
writing the resulting equations in matrix form, we obtain 

iw/6)(4 + C + C ') (h/2Ax)(C - C-') 
(gh/2Ax)(C - X-') (h + ~,)(h/6)(4 + X + E-') 

where 
c ~ eiaAx 

The determinant of the matrix in (24) must be zero for a non-trivial solution to exist and therefore 
we must have 

32(C - c-' 1 gh 
w2 - i z * o  + __ -- = 0. 

(4 + C + C-')2 Ax2 

For convenience we define the dimensionless frequency, dimensionless wave number and 
dimensionless friction factor respectively 
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- Analytical Roots 1 & 2 
---- Numerical Root 1 --- Numerical Root 2 

Thus equation (26), which describes the necessary condition for a non-trivial solution, can be 
expressed using dimensionless variables as 

I 

Solving for the roots of (30), we have 

Equation (31) represents the dispersion relationship for a PE solution at an interior node and 
relates frequency and wave number. Physically, Qiyy' describe a progressive and a regressive 
wave respectively. These numerical roots are compared with the roots from the analytical 
solution to the continuum form of the shallow water equations; the analytical roots are given by 

2 I\ 4 ' 1 1 , 2  - 

In Figure 13 the absolute values of the dimensionless frequencies for both Case 1 and the 
analytical solution are plotted against dimensionless wave number for a frictional case with 
T* = 0.4. We note from Figure 13 that whereas the analytical solution has a monotonic linear 
dispersion curve, the PE solution at an interior node has a folded dispersion curve, allowing 
two wave numbers for a wide frequency range. The low-wave-number solution corresponds to 

Figure 13. Dispersion curves for Case 1, primitive continuity and momentum equations on interior nodes 
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a long physical wave and the high-wave-number solution corresponds to a short near-2Ax 
artificial wave (K = 1.0 for a 2Ax wave). Platzman3' first identified this folded dispersion curve 
as the origin of spurious modes in PE-based solutions to the shallow water equations. Finally 
we note the consistency of the PE solution in that as K approaches zero (i.e. for very long 
waves), the analytical and numerical dispersion curves converge. 

Case 2. Wace equation and momentum equution on interior nodes 

and momentum equation for all interior nodes for WE-based solutions are 
We now examine the WE solution on interior nodes. The discrete forms of the wave equation 

(33) 

(34) 

* . *  
- ( 4 6 ) ( w  - i~,)(tj- 1 + 4tj + gj+ 1) + (&/Ax2)(-tj- 1 + 25j - ij+ 1) = 0, 

( i ~  + T,)(h/6)(hj- 1 + 4u ĵ + hi+ 1) + (gh/2Ax)([,+ - gj- = 0. 

Applying Fourier analysis by substituting (22) and (23) into (33) and (34) and simplifying the 
resulting equations leads to the following system of equations: 

lizol - (w/~ ) (w  - i ~ , ) ( 4  + C + C-')  + (hy/Ax2)(2 - C - C - ' )  0 
(iw + z,)(h/6)(4 + C + X-') (gh/2A~)(C - X-') U ,  

= [3* (35) 

Again for a non-trivial solution the matrix in (35) must have a determinant equal to zero. This 
determinant may be expressed using the dimensionless variables defined in (27)-(29) as 

Three roots exist for (36): 

Equations (37) and (38) describe the dispersion of waves for the WE solution at interior nodes. 
The first root represents a numerical artefact associated with the time differentiation performed 
to derive the WE. The second and third roots again represent a forward- and a backward- 
progressing wave respectively. The absolute values of the interior node WE roots are plotted 
together with the analytical roots against dimensionless wave number for the case T, = 0.4 in 
Figure 14. We note that the WE solution at interior nodes has a monotonic dispersion 
relationship like the analytical solution. Platzman3' explained the superior solution properties 
of the WE-based solution using these dispersion curves by noting that only a physical wave is 
permitted in the numerical solution. Finally we note that the WE solution is consistent with the 
analytical solution. 

Cuse 3. Primitive continuity und essential normal f low boundary condition on boundary nodes 

We now apply dispersion analysis to boundary nodes by examining the primitive continuity 
equation on a boundary node in conjunction with a specified homogeneous normal flow 



1052 

- Analytical Roots 1 & 2 --- Numerical Root 1 
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boundary condition equation which replaces the momentum equation at land boundary nodes 
in the PE-S solution. These discrete equations are written for the left-hand boundary (node 1) 
in a one-dimensional grid as 

(io/6)(2e1 + t2 )  + (h/2Ax)(h2 - G l )  = 0, (39) 

G1h = 0. (40) 

Substitution of the Fourier solution components (22,) and (23) and subsequent rearrangement 
of these equations lead to the following system of equations in matrix form: 

( i~ /6) (2  + Z) (h/2Ax)(X - 1)  
1 

For a non-trivial solution the determinant of (41) must be zero. In non-dimensional form this 
may be expressed as 

iQ(2 + Z) = 0. (42) 

Only one root exists for (42): 

0. (43) p a s e - 3  = 
1 

This root is plotted in Figure 15 and indicates that infinite aliasing occurs when a primitive 
continuity equation is paired with an essential normal flow boundary condition at boundary 
nodes. 
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I 

- Analytical Roots 1 & 2 
_--- Numerical Root 1 

Case 4.  Wave equation and essential normul flow boundary condition on boundary nodes 

We continue our analysis by examining the wave equation on a boundary node paired with 
a specified homogeneous normal flow boundary condition equation which replaces the mo- 
mentum equation at land boundary nodes in the WE-S solution. The pertinent discrete equations 
are written for the left-hand boundary (node 1) in a one-dimensional grid as 

(1/6)(-02 + Iwz,)(~(?, + [2) - (hg/Ax2)((?, - (?,) - (h + ~ , ) ( h / A x ) h ,  = 0, (44) 

li,h = 0. (45) 

Fourier analysing these equations by substituting in (22) and (23) and simplifying leads to the 
following system of equations: 

o2 + ioz,)(2 + C) - (hg/Ax2)(C - 1) -(io + T , ) ( ~ / A x )  ["- 0 1 

Setting the determinant of (46) equal to zero leads to the following dispersion equation written 
in non-dimensional form: 

6 Z - 1  
7 r 2 Z + 2  

Q2 - iT,KQ + - -__ = 0. 

Equation (47) has two roots: 

ocase-4 - __ iT, K f ( T Y 2  ,9 zZi)1'2 
2 1.2 - 

(47) 
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The absolute values of the dimensionless frequencies given by (48) are plotted against dimension- 
less wave number for the frictional case T, = 0.4 in Figure 16. We note that the dispersion curves 
associated with the WE paired with a no-normal-flow boundary condition at boundary nodes 
are non-folded but inconsistent. 

Case 5. Elevation boundary condition and momentum equation on boundary nodes 

Dispersion analysis is next applied to boundary nodes for which a homogeneous elevation 
boundary condition is treated as an essential condition, i.e. it replaces the PE or WE, and is 
paired with a momentum equation at the boundary node. The discrete form of these equations 
for the left-hand boundary (node 1) is expressed as 

A 

il = 0, (49) 

(50) ( i ~  + ~,)(h/6)(2ti, + $2) + (gh/26~)(!, - ti) = 0. 

Equations (49) and (50) are applied at specified elevation boundary nodes for the PE-S, WE-S, 
PE-E, WE-E and PE-W solutions presented in this paper. Applying Fourier analysis by 
substituting (22) and (23) into (49) and (50) and simplifying leads to the following system of 
equations: 

1 

[(gh/2*x)(X - 1) (fro + 
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1.5 

The determinants of (51) must be zero for a non-trivial solution, which leads to the following 
dispersion equation expressed in non-dimensional form: 

1 

Analytical Roots 1 & 2 
Numerical Root 1 

- ---- 

(ill + T,K)(h/6)(2 + X) = 0. (52) 

Equation (52) has only one root: 

This root is in fact identical to the artificial root which arises with the WE solution discrete 
equations at interior nodes (i.e. Case 2, root The root is non-folded but inconsistent for 
cases where T, > 0 as is shown in Figure 17. If T* = 0, equation (53) implies infinite aliasing, 
but this case does not occur in practice because a frictionless system leads to an unstable solution. 

Case 6. Weak form of the primitive continuity equation and momentum equation on boundary nodes 

Finally we apply dispersion analysis to boundary nodes which utilize the weak form of the 
primitive continuity equation paired with the momentum equation. These discrete equations are 
applied for specified no-normal-flow boundary nodes in the PE-W solution and are expressed 
at the left-hand boundary (node 1) in a one-dimensional grid as 

(iw/6)(2i1 + i2) + (h/2Ax)(G2 - GI) = 0, 

(iw + s,)(h/6)(2G1 + i2) + (gh/2Ax)( t ,  - !I) = 0. 

(54) 

(55 )  
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K 

Figure 18. Dispersion curves for Case 6,  weak form of primitive continuity equations and momentum equation on 
boundary nodes 

Fourier analysing these equations by substituting in (22)  and (23) and simplifying yields the 
following system of equations: 

Setting the determinant of (56) equal to zero leads to the following dispersion equation expressed 
in non-dimensional form: 

6' (C - 1)' 
Q2 - IT,KQ + ~ - - 

4n2 (C + 2)2 - O. 

Equation (57) has two roots: 

p a s e - 6  - FT, __ K f ( T : K 2  6' (X - 1)2)"2 
2 4 47? (2 + 2)2 1 . 2  - 

(57) 

Figure 18 plots the absolute value of these roots for the case T, = 0.4 and indicates that the 
dispersion curves are monotonic and consistent for the case where the weak form of the primitive 
continuity equation is paired with a momentum equation at no-normal-flow boundary nodes. 

DISCUSSION 

We have presented a number of solutions to the shallow water equations and examined the 
characteristics of each solution using numerical experiments and convergence tests. We have 
also performed dispersion analyses for discrete equation pairs on interior nodes as well as on 
boundary nodes which are components of the various solution strategies examined in the 
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numerical experiments. We now re-examine each solution and relate the behaviour seen in the 
numerical experiments to the various dispersion analyses performed. 

The well-known PE-S solution solves the primitive continuity equation in conjunction with 
the momentum equations. For seaward boundary nodes a standard essential elevation boundary 
condition is implemented by replacing the continuity equation at the boundary node with the 
specified elevation value. For land boundary nodes an essential no-normal-flow boundary 
condition is enforced by replacing the momentum equation at the boundary node with a specified 
zero-normal-flow condition. The numerical experiments and convergence tests lead to the 
well-known noisy solutions with numerical short waves persisting regardless of the degree of 
grid refinement. The results of the dispersion analyses performed for Cases 1, 3 and 5 concur 
with the numerical experiments performed, namely a folded dispersion curve is associated with 
a noisy solution. Both PE-S interior nodes (Case 1) as well as PE-S no-normal-flow boundary 
nodes (Case 3) have folded dispersion relationships allowing the existence of a long physical 
wave as well as a short near-2Ax artificial wave. Although PE-S specified elevation seaward nodes 
(Case 5) have a monotonic linear dispersion curve, the interior and specified no-normal-flow 
boundary nodes significantly outnumber the specified elevation seaward nodes and therefore 
dominate the overall behaviour of the solution. 

The highly successful WE-S solution solves the WE in conjunction with the momentum 
equations. For seaward boundary nodes a standard elevation boundary condition treatment is 
realized by substituting the specified elevation value for the WE. For land boundary nodes an 
essential no-normal-flow boundary condition is enforced by replacing the momentum equation 
at the boundary nodes with a specified zero-normal-flow equation. The numerical simulations 
presented confirm that the WE-S solutions are excellent and that no spurious modes are 
generated regardless of the discretization used. The results of the dispersion analyses for Cases 
2, 4 and 5 corroborate the observed numerical behaviour. The dispersion curves for all WE-S 
discrete equations including interior nodes (Case 2), no-normal-flow boundary nodes (Case 4) 
and specified elevation seaward boundary nodes (Case 5) are monotonic. Thus only one physical 
long wave is allowed in the solution. 

The PE-E solution solves the primitive continuity equation in conjunction with the momentum 
equations. All boundary nodes have specified essential elevation boundary conditions which 
replace the continuity equation at  the boundary nodes. Interestingly, the PE-E elevation 
solutions obtained in our numerical experiments are noise-free and show excellent agreement 
with the analytical solution. Velocity solutions were good in the interior of the domain but did 
not reduce to zero normal flow on land boundaries, allowing some leakage near the interior 
boundary of the domain. Our dispersion analyses indicate that while PE-E interior nodes (Case 
1) have a folded dispersion behaviour, the specified elevation boundary nodes (Case 5 )  have an 
associated linear monotonic dispersion curve. Based on the results of the numerical experimenis, 
we infer that the influence of the boundary nodes with their monotonic dispersion behaviour is 
sufficient to suppress the spurious mode character of the interior nodes, thus leading to an 
overall solution essentially free of noise. 

The WE-E solution studied solves the WE in conjunction with the momentum equations with 
all boundary nodes having specified essential elevation boundary conditions which replace the 
WE at the boundary nodes. The numerical experiments indicate that the WE-E solution 
continues to produce smooth and accurate solutions. We do note that the WE-E solution exhibits 
the same mass leakage problem as the PE-E solution. The results of dispersion analyses again 
match the numerical experiments in that both interior WE-E nodes (Case 2) as well as specified 
elevation boundary nodes (Case 5 )  have monotonic dispersion relationships. 

Finally, the PE-W algorithm solves a weak form of the primitive continuity equation in 
conjunction with the momentum equations. For seaward boundary nodes a standard essential 
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elevation boundary condition is implemented by replacing the continuity equation at the 
boundary node with the specified elevation value. For land boundary nodes a natural no-normal- 
flow boundary condition is enforced by computing the boundary integral in the weak form of 
the continuity equation. No momentum equations are discarded at land boundary nodes. While 
the discrete equation pairs are the same as for the PE-S solution for interior and seaward 
boundary nodes, they are significantly different for the land boundary nodes. Again the numerical 
experiments indicate that the PE-W solutions do not exhibit the characteristic noisy behaviour 
of the PE-S solutions. Both the elevation and velocity solutions are very good with the exception 
of the same mass imbalance problem at the inner land boundary which appeared in the PE-E 
and WE-E solutions. Note that the PE-W solution converges very nicely and that no spurious 
modes appear even for the finest grids. Dispersion analyses can be used to explain why the 
PE-W solution does not exhibit the same behaviour as the PE-S solution. While the PE-W 
interior nodes have an associated folded dispersion curve (Case l), both PE-W specified elevation 
seaward nodes (Case 5 )  and PE-W no-normal-flow boundary nodes (Case 6 )  have associated 
monotonic dispersion curves. Again based on the results of the numerical experiments, we infer 
that the influence of the boundary nodes with their monotonic dispersion behaviour is sufficient 
to suppress the spurious mode character of the interior nodes. We note that it is the dispersion 
character of the entire system of nodes that is important and that the dispersion behaviour of 
the system need only be sufficiently elevated at the high-wave-number portion of the spectrum 
to avoid dual wave numbers for the pertinent forcing and response f r e q ~ e n c i e s . ~ ~  

CONCLUSIONS 

The numerical experiments presented in this paper indicate that while WE solutions to the 
linearized harmonic shallow water equations are insensitive to boundary conditions, PE 
solutions are significantly affected by boundary condition implementation. The WE-S and WE-E 
solutions always lead to excellent noise-free solutions. The PE-S solutions are very poor, being 
contaminated with high-wave-number noise while the PE-E and PE-W solutions are very good 
and generally free of numerical noise. The presence of noise appears to be insensitive to the 
degree of grid refinement and to network irregularities in all solutions with the exception of the 
PE-S solution. 

Dispersion analyses of both interior and boundary node equation pairs offer a satisfactory 
explanation for the observed behaviour. The WE solutions exhibit a monotonic dispersion 
behaviour for interior as well as boundary nodes for both elevation and no-normal-flow 
boundary conditions. On the other hand, the PE solutions always have folded dispersion curves 
for interior nodes but may or may not have similar curves for boundary nodes. In particular, 
PE solutions have folded dispersion curves at boundary nodes when essential no-normal-flow 
boundary conditions are used but have monotonic curves at  boundary nodes when essential 
elevation or natural no-normal-flow boundary conditions are used. In the PE-E and PE-W 
solutions the monotonic dispersion behaviour of the boundary nodes is sufficient to suppress 
the folded dispersion behaviour of the interior nodes; this results in an overall dispersion 
behaviour of the system which is sufficiently elevated at the high-wave-number portion of the 
spectrum to avoid dual wave numbers for the frequency range of interest. 

In closing, we note that our study has focused on the linear harmonic shallow water equations 
applied to highly idealized cases (i.e. the numerical experiments were applied to a linear problem 
with a regular two-dimensional domain with regular varying bathymetry and idealized boundary 
conditions on a regular boundary, and the dispersion analyses were applied to a one- 
dimensional problem with constant bathymetry). Even though the experiments in this paper 
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indicate that the quarter-annulus test problem solved with the PE-E and PE-W solutions 
was nearly as successful and the WE-S and WE-E solutions, our experience indicates that 
field applications using the PE-W-based solutions are still not as robust or noise-free as 
WE-S s o l ~ t i o n s . ~ ~ - ~ ~ . ~ ~ ~ ~ ~  This is most likely a result of the PE-W solution being dependent 
on the characteristics of the boundary nodes compensating for the poor behaviour of the 
interior nodes. The WE solutions on the other hand have excellent numerical properties at 
both interior and boundary nodes. Therefore, although the present study has provided additional 
insight to the behaviour of both PE and WE solutions with various boundary condition 
implementations, we strongly recommend that the WE solution strategy be used in practical 
applications. 
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